【数据库原理】

[Principle of Database]

一、基本信息

课程代码: 【2050217】

课程学分:【3】

面向专业: 【计算机科学与技术】

课程性质: 【院级必修课 ◎】

开课院系: 信息技术学院计算机科学与技术系

使用教材:

教材: 【数据库技术及应用 谷伟主编 中国铁道出版社 2017 年 9 月】 参考书目

【数据库原理应用与实践 SQL Server2014 (第 2 版) 贾铁军主编 科学出版社

2015年6月第2版】

【数据库原理及应用 高凯主编 电子工业出版社 2011年1月】

【数据库系统概论(第五版) 王珊编著 高等教育出版社 2014年5月第五版】

课程网站网址:

http://www.zhihuishu.com

先修课程: 【数据结构 2050082 (4)】

二、课程简介

该课程是计算机类相关专业的核心课程,是信息技术学院的院级平台课程,也是重点课程之一,同时也是学习其它课程的前提和基础课程。本课程主要任务是系统地介绍数据库系统基本概念,数据库设计基本方法,数据库程序设计和数据库实现。通过本课程的学习,使学生掌握数据库系统基本概念及其设计、实现技术,具有设计、实现数据库和数据库程序设计的基本能力。该课程的学习和掌握一方面需要课堂上认真听讲,另外,还需要课后自主学习相关内容,特别是一些数据库的设计和应用,需要自己课后勤于练习,才能掌握相关知识点。同时还需要和其它课程结合,综合利用相关技术开发相应的数据库应用系统。

三、选课建议

数据库原理课程适合计算机类及相关专业的学生进行学习,在学习本课程之前,除了学过高等数学外,学生应该要掌握 1-2 门程序设计语言和数据结构的相关知识,从而具备了学好该课程的抽象能力和基本必要的知识。

四、课程与专业毕业要求的关联性

软件工程专业毕业要求	关联
LO1: 工程知识: 能够将数学、自然科学、工程基础和专业知识用于解决复杂工程问题	
LO2: 问题分析: 能够应用数学、自然科学和工程科学的基本原理,识别、表达、并	•
通过文献研究分析复杂工程问题,以获得有效结论	
LO3:设计/开发解决方案:能够设计针对复杂工程问题的解决方案,设计满足特定需	
求的系统、单元(部件)或工艺流程,并能够在设计环节中体现创新意识,考虑社会、	
健康、安全、法律、文化以及环境等因素	
LO4: 研究: 能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计	
实验、分析与解释数据、并通过信息综合得到合理有效的结论	
LO5: 使用现代工具: 能够针对复杂工程问题,开发、选择与使用恰当的技术、资	
源、现代工程工具和信息技术工具,包括对复杂工程问题的预测与模拟,并能够理	
解其局限性	
LO6: 工程与社会: 能够基于工程相关背景知识进行合理分析,评价专业工程实践和	
复杂工程问题解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的	
责任	
LO7: 环境和可持续发展: 能够理解和评价针对复杂工程问题的专业工程实践对环境、	
社会可持续发展的影响	
LO8: 职业规范: 具有人文社会科学素养、社会责任感,能够在工程实践中理解并遵	
守工程职业道德和规范,履行责任	
LO9: 个人和团队: 能够在多学科背景下的团队中承担个体、团队成员以及负责人的	
角色	
LO10: 沟通: 能够就复杂工程问题与业界同行及社会公众进行有效沟通和交流,包	
括撰写报告和设计文稿、陈述发言、清晰表达或回应指令。并具备一定的国际视野,	
能够在跨文化背景下进行沟通和交流	
LO11: 项目管理:理解并掌握工程管理原理与经济决策方法,并能在多学科环境中应用	
LO12: 终身学习: 具有自主学习和终身学习的意识,有不断学习和适应发展的能力	

五、课程目标/课程预期学习成果

序	课程预期	课程目标	 教与学方式	评价方式	
号	学习成果	(细化的预期学习成果)	教刊子ガス		
1	L02 问题分析:		讲授、练习、实	实验、测试、	
	能够应用数学、	能利用 DBMS 进行数据库及表	践	作业、实作	
	自然科学和工	的创建和使用		评价	
	程科学的基本	能对数据库中的数据进行相关			
	原理,识别、表	管理操作			
	达、并通过文献	能结合语言进行数据库编程和			
	研究分析复杂	系统开发			
	工程问题,以获	能对数据库进行安全管理和维			

	得有效结论	护		
2	L091: 能够理解团队合作的意义,能与团队成员,或跨学科成员有效沟通,合作共事	能够实现协同学习掌握数据库 知识	讲授、讨论	实验、作业、 报告、实作 评价
	L092: 能够在 团队中根据角 色要求发挥应 起的个人或团 队作用,独立或 合作开展工作	能够根据现实信息进行数据模 型转换	讲授、讨论	体现协同学 习的作业报 告

六、课程内容

第1单元 数据库概述

通过本单元学习,学生能知道数据管理技术发展过程;知道数据库系统的特点;理解数据库系统的一些基本概念(如字段、域、属性、对象、记录、元组、关系、表等)和数据库管理系统的定义;能理解数据库系统及其三级模式体系结构。理解数据模型的概念;能运用关系代数原理解答数据的基本操作。

重点:数据库系统特点:数据库系统基本概念:数据库系统及其三级模式体系结构。

难点:数据库系统及其三级模式体系结构:数据模型的概念和运用。

注:本章节采用混合式教学,其中集中研讨2节课,在线学习2节课,研讨主要以教师集中讲授一些数据库概念、交流互动为主。详见教学进度表。

第2单元 数据库设计基础

通过本单元学习,能运用ER图实现关系数据库模式的转换,学生能运用关系数据库完整性 原理对数据表进行完整性定义和约束。掌握数据库设计过程及方法。

重点: ER数据模型的应用。

难点:数据模型的运用。

注:本章节采用混合式教学,其中集中研讨2节课,在线学习2节课,研讨主要以教师集中讲授设计过程中ER模型设计和关系模式转换的知识点、并结合具体实例进行互动。详见教学进度表。

第3单元 SQL 语言基础

通过本单元学习,学生能运用SQL中的DDL进行模式、库、表的定义;能运行SQL中的DML进行数据的增、删、改、查;能达到综合运用数据查询功能完成相关查询要求和任务。能知道文件的组织和文件结构,理解文件的索引结构,能运用文件的索引。能运用视图的定义及应用。

重点: SQL中的DML

难点: SQL中的查询语句

注:本章节采用混合式教学,其中集中研讨6节课,在线学习6节课,研讨主要以教师重点讲解查询语句、并结合软件实际操作相关实例、并通过练习互动提高学生的能力。详见教学进度表。

第4单元 数据库编程

通过本单元学习,学生能理解T-SQL的基础。运用T-SQL实现批处理、脚本和事务。能运用存储过程、触发器进行数据库管理。理解存储过程的概念、建立方法、执行方法和维护方法。理解触发器的概念、建立方法、执行方法和维护方法。

重点:存储过程和触发器。

注:本章节采用混合式教学,其中集中研讨2节课,在线学习2节课,研讨主要以教师重点讲解存储过程的使用、并结合软件实际操作相关实例、并通过练习互动提高学生的能力。详见教学进度表。

第5单元 关系规范化设计

通过本单元学习,学生能理解规范化的问题;能理解函数依赖关系;理解范式和实现关系模式的规范化。

重点:范式及规范化。

难点:关系模式规范化。

注:本章节采用混合式教学,其中集中研讨2节课,在线学习2节课,研讨主要以教师重点讲解规范化设计、并通过练习互动提高学生的能力。详见教学进度表。

第6单元 数据库安全管理

通过本单元学习,学生能理解事务的概念和特征。理解并发控制的概念、措施和协议。对 理解共享锁和排他锁。学生能运用数据库管理系统对数据库进行还原和备份、能运用相关知识 对数据库用户和角色进行权限设置。

重点: 事务的特征、活锁和死锁; 数据库还原和备份。

难点:安全管理。

注:本章节采用混合式教学,其中集中研讨2节课,在线学习2节课,研讨主要以教师重点讲解事务概念、数据备份的使用、并通过练习互动提高学生的能力。详见教学进度表。

第7单元 数据库应用系统项目案例

通过本单元学习,学生可熟悉数据库应用系统项目的设计过程及思路,能根据需求分析,进行数据库的概念、逻辑和物理结构设计,能进行数据库行为设计,达到综合应用的层次。

重点:数据库应用系统项目的设计。

注: 学生通过教材自主学习相关内容。

七、课内实验名称及基本要求

序 号	实验名称	主要内容	实验 时数	实验类型	备注
1	数据库定义及数 据操纵	创建数据库、表,能正确添加、修 改、删除数据	4	验证性	Windows 7操作系 统; SQL Server
2	数据查询	使用 SQL 语句对数据库进行查询	4	设计型	Windows 7操作系 统; SQL Server
3	视图、触发器和 存储过程的使用	在数据库中,通过设计视图、触发器 及存储过程实现对数据库的管理	4	设计型	Windows 7操作系 统; SQL Server
4	数据库设计	使用 ER 模型对现实信息进行数据库设计	4	设计型	Windows 7操作系 统; SQL Server

八、评价方式与成绩

总评构成(1+X)	评价方式	占比
1	期末考核	40%
X1	课堂展示、课外学习、集中研讨、小组互动	25%
X2	单元笔试	15%
Х3	上机考试、实验	20%

撰写人: 谷伟 系主任审核签名: 戴智明

审核时间: 2022.9.1