《 计算机导论 》本科课程教学大纲

一、课程基本信息

) H 10 67 16	(中文) 计算机导论					
课程名称	(英文) Introduction to Computer Science					
课程代码	2050048	课程	学分	2		
课程学时	32	理论学时	16	实践学时	16	
开课学院	信息技术学院	适用专	业与年级	25 级计算机=	专业	
课程类别与性质	专业必修课程	考核	方式	考查		
选用教材		算机科学导论》杜小甫、刘鹤丹、付爽, ISBN -113-29353-6, 中国铁道出版社, 2022 年 5.1 版 				
先修课程	无					
课程简介	《计算机导论》是计算机相关专业的一门专业基础课。本课程是计算机基础理论与应用操作相结合的课程,课程内容涉及计算机科学的方方面面,要求做到广度优先。本课程首先为学生提供关于计算机学科的入门概述,系统了解计算系统的三大组成部分,信息、电路、程序的基本原理知识。本课程让学生掌握系统的软件系统知识和操作技能,如操作系统、信息处理软件、数据管理软件等。让学生掌握系统的通信系统,如计算机网络、互联网等知识和应用,以及计算机领域的前沿技术,如人工智能的技术原理及应用等。本课程使学生对计算机科学有一个系统的、基础的认识和技能,为后续课程的学习做好必要的知识准备。					
选课建议与学习 要求	本课程是计算机科学与技术、网络工程、软件工程、物联网工程等专业的学科基础必修课,适合在大学一年级开设。有助于帮助学生掌握系统的计算机科学的基础知识和基本技能。适合作为计算机专业的第一门专业课程。					
大纲编写人	可同	(签名) 制/修订时间		2025年9月	10 日	
专业负责人	3700	(签名) 审定时间		2025年9月	15 日	
学院负责人	新桂	(签名)	批准时间	2025年9月	18 日	

二、课程目标与毕业要求

(一) 课程目标

类型	序号	内容			
知识目标	1	了解计算系统的基础知识、计算机科学前沿技术的发展和应用。			
和以日协	2	了解各类软件的操作方法和技能,如信息处理、数据管理等。			
+±4k 다 に	3	能够使用应用软件完成事务处理,提高自主学习、独立思考、分析问题及解决问题的能力。			
技能目标	4	能够使用网络通信、人工智能应用,实现快速学习、协作完成复杂 任务的能力。			
素养目标 (含课程思 政目标)	5	增强信息意识,养成良好的信息道德修养,适应新时代和信息社会对人才培养的新需求。			

(二)课程支撑的毕业要求

L02 问题分析: 能够应用数学、自然科学和工程科学的基本原理,识别、表达、并通过 文献研究分析复杂工程问题,以获得有效结论。

④在充分理解专业知识的基础上,能够运用所学知识开展文献检索和资料查询。

L012 终身学习: 具有自主学习和终身学习的意识,有不断学习和适应发展的能力。

①能够根据课程要求进行自主学习。

(三) 毕业要求与课程目标的关系

毕业 要求	指标 点	支撑 度	课程目标	对指标点的 贡献度
LO2		М	1.了解信息技术的基础知识、新一代信息技术的发展和应用。	50%
LO2	4)	IVI	4.能够使用操作系统管理系统资源,能够有效获取 网络资源、保护个人计算机网络安全。	50%
			2. 运用办公软件进行文档编辑、数据管理及演示文稿制作。	30%
LO12	2 1 H	Н	3. 能够使用办公软件完成日常事务处理,提高自主学习、独立思考、分析问题及解决问题的能力。	40%
			5. 增强信息意识,养成良好的信息道德修养,适应新时代和信息社会对人才培养的新需求。	30%

三、课程内容与教学设计

(一) 各教学单元预期学习成果与教学内容

第1单元 计算机科学概述

知识点:介绍计算机科学、信息化社会的挑战、对计算机专业毕业生的基本要求、计算机专业的知识体系。

能力要求:通过本单元的学习,能够理解计算机的基本概念(定义、分类、特点、用途和发展)。

教学重点: 计算机的基本概念。

教学难点: 计算机科学的知识体系。

理论学时:1 实验学时:0

第2单元 计算系统

知识点:

- 1) 数值与记数系统,数据的表示法;
- 2) *门和电路; 计算部件;
- 3) 低级程序设计语言与伪代码,问题求解与算法设计,*数据类型与数据结构,高级程序设计语言与设计范式;

预期成果:

- 1) 掌握记数系统原理,信息转化为数据的类型及表示方法;
- 2) 掌握门和电路,计算部件的类型及作用;
- 3) 了解机器语言、伪代码、汇编语言、算法设计与表达;
- 4) 了解高级程序设计语言,程序设计范式类型;

教学内容:

- 1) 教学重点: 信息编码, 冯·诺伊曼体系, 算法设计及表达
- 2) 教学难点:数据表示法,*电路组合,算法表达

理论学时: 6

实验学时: 4

第3单元 操作系统

知识点:

- 1) 系统角色,内存管理,进程管理,CPU调度;
- 2) 文件系统, 目录:

预期成果:

- 1) 了解操作系统的角色,资源管理的方法原理,;
- 2) 了解文件系统的基本特点,掌握文件和文件夹的管理方法和基本操作;
- 3) 了解和学会文件系统中应用程序的安装和卸载方法,掌握文件系统中设置方法; 教学内容:
- 1) 教学重点:文件和文件夹的管理操作,应用程序的管理操作,系统的设置。
- 2) 教学难点:常用的系统设置的功能和方法。

理论学时:1

实验学时: 0

第4单元 数据管理软件

知识点:

- 1) 数据模型的概念及建模的方法;
- 2) 数据建模语言 SQL 语句的语法语义;

预期成果:

- 1) 掌握数据模型的建模过程及描述方法;
- 2) 掌握数据模型的定义、操纵和查询的基本语句语法;
- 3) 掌握数据库工具软件 Access 的操作方法;
- 4) 了解使用 AI 工具进行相关的数据建模及应用:

教学内容:

- 1) 重点: 概念模型的实体联系图、数据模型的关系模式表
- 2) 难点:数据模型的查询语句的应用

理论学时:2 实验学时:2

第5单元 信息处理软件

知识点:

- 1) 文字信息处理:文字编辑,格式化与样式,文档布局,排版设计、长文档规范化和自动化技术:
- 2) 电子表格处理:公式与函数,单元格的格式化与样式,表格的样式,数据管理,数据分析,数据可视化;
- 3) 演示文稿处理: 幻灯片的编辑和格式化, 幻灯片的超链接和动画效果, 幻灯片的设计与美化技术, 幻灯片的版式结构和配色方案, 演示文稿布局的设计方法

预期成果:

- 1) 掌握文字信息的处理方法与软件操作;
- 2) 掌握电子表格的处理方法与软件操作;
- 3) 掌握演示文稿的处理方法与软件操作
- 4) 掌握 MS office 的系列软件, Word, Excel, Powerpoint 的操作;
- 4) 了解使用 AI 工具进行相关的信息处理;

教学内容:

- 1) 重点: 文字信息的处理与操作, 电子表格的处理与操作
- 2) 难点: 电子表格的函数、分析、可视化

理论学时: 3 实验学时: 6

第6单元 网络通信

知识点:

- 1) 数据通信技术基础、计算机网络基础;
- 2) 互联网基础及应用; 网络协议与体系结构;
- 3) 网络信息安全;

预期成果:

- 1) 了解数据通信技术基础,了解计算机网络基础;
- 2) 掌握互联网基础及应用;
- 3) 掌握信息时代的安全技术;

教学内容:

- 1) 教学重点: 计算机网络基础,互联网基础及应用,信息时代安全技术。
- 2) 教学难点: 网络体系结构, 网络安全技术, IP 地址与域名管理。

理论学时:1 实验学时:2

第7单元 前沿技术

知识点:

- 1) 人工智能的技术,人工智能的应用;
- 2) 云计算和大数据;
- 3) 物联网技术;
- 4) 区块链技术;

预期成果:

- 1) 了解人工智能的技术和应用;
- 2) 了解大数据和云计算,物联网,区块链等技术和发展;

教学内容:

- 1) 教学重点:人工智能,云计算,物联网。
- 2) 教学难点:人工智能技术和应用。

理论学时: 2 实验学时: 2

(二) 教学单元对课程目标的支撑关系

教学单元	课程目标	1	2	3	4	5
第1单元	计算机科学概论	√	√			√
第2单元	计算系统	√	√			√
第3单元	操作系统	√	√	√		
第4单元	数据管理	√	√	√		√
第5单元	信息处理	√	√	√		√
第6单元	网络通信	√	√		√	√
第7单元	前沿技术	√	√		√	√

(三) 课程教学方法与学时分配

教学单元	教与学方式	考核方式	学时分配
------	-------	------	------

			理论	实践	小计
第1单元 课程概述	讲授法	测验	1		1
第2单元 计算系统	讲授法、自主学习法	测验	6	4	8
第3单元 操作系统	讲授法、实践法	测验	1		1
第4单元 数据管理	讲授法、实践法	测验	2	2	4
第5单元 信息处理	讲授法、实践法	大作业	3	6	12
第6单元 网络通信	讲授法、实践法	综合实践	1	2	2
第7单元 前沿技术	讲授法、自主学习法	综合实践	2	2	4
	合计				

(四)课内实验项目与基本要求

序号	实验项目名称	目标要求与主要内容	实验 时数	实验 类型
1	AI 提示词工程	掌握人工智能智能体的交互协作方法, Prompt 的基本结构、设计方法、深度交互 等基本操作。	3	2
2	MS Office 办公软件的使用:数据管理软件的使用	掌握数据管理软件 Access2016 的基本使用方法。学会编辑数据表、管理数据表,输入记录、编辑记录,查询记录的投影、选择、连接等操作方法。	3	2
3	MS Office 办公软件的使用:文字处理软件的使用	掌握文字处理软件 Word2016 的基本使用方法。学会编辑文字和图片、表格应用、编辑公式、创建目录、脚注、尾注、题注、引用、邮件合并和审阅等操作方法。	3	2
4	MS Office 办公软件的使用: 电子表格数据处理软件的使用	掌握电子表格数据处理软件 Excel2016 的基本使用方法。学会数据的统计、排序、筛选、分类汇总、数据透视表、数据图表制作等基本的数据管理方法。	4	2
5			3	2

实验类型: ①演示型 ②验证型 ③设计型 ④综合型

四、课程思政教学设计

第1单元	通过信息化社会的挑战、对计算机专业毕业生的基本要求、计算机专业的
	知识体系介绍,让学生了解计算机学科的现状,做好专业学习规划。
第2单元	强化硬件自主创新意识,筑牢软件安全防线;通过数据案例渗透责任伦理,
第 2 年几 	培育科技报国与规范用技的职业素养。
	让学生了解文件系统在计算机系统中的地位和作用,以及文件管理对于个
第3单元	人信息保护和社会信息安全管理的重要性。培养学生的数据管理能力,树
	立计算机安全意识。
第4单元	融入数据伦理教育,强调数据安全与隐私保护;结合案例培养诚信科研意
	识,树立技术服务社会的责任担当。
	让学生调查本专业技术的研究内容、方向、成果及行业影响并汇总。结合
第 5 单元	调查规划大学学习与职业发展。讲解电子表格处理概念、原理与应用,明
カラギル	确其在信息管理和数据分析中的重要性。通过小组项目制作汇报文稿,提
	升办公软件应用能力与效率。
第6单元	通过讲解网络通信的安全技术,引导学生树立正确的信息安全观念,如不
第 6 年几 	随意泄露个人信息、不参与网络攻击等。
第7单元	通过新一代前沿技术,引入我国最新的人工智能技术,引导学生更好地获
为 / 毕 儿	取、整理和利用学术资源,提升学生的学术素养和研究能力。

五、课程考核

总 评 Luk	11. +/ 1-/ - 1-	课程目标					合计	
构 成		考核方式	1	2	3	4	5	
X1	40%	综合实践		50	10	20	10	100
X2	30%	小组项目	20	30	20	20	10	100
Х3	20%	课堂表现 (课堂听讲、课后作业等)	20	30	10	30	10	100
X4	10%	课堂小测验	30	20	30		20	100

六、其他需要说明的问题

无