嵌入式软件开发

Embedded Software Development

一、基本信息

课程代码:【2050291】

课程学分:【3】

面向专业:【计算机科学与技术】

课程性质:【专业限选课】

开课院系:【信息技术学院计算机科学与技术系】

使用教材:

教材【刘火良等编著,uC/OS-III 内核实现与应用开发实战指南(第一版),北京:机械工业出版社,2020.】

教材【何小庆等译. 嵌入式实时操作系统 UCOS-III 应用开发:基于 STM32 微控制器(第一版),北京:北京航空航天大学出版社,2012.】

参考书目【程文娟. 嵌入式实时操作系统 UCOS-II 教程(第二版), 西安: 西安电子科技大学出版社, 2017.】

二、课程简介

本课程主要讲述基于 STM32F40x 芯片和实时操作系统 UCOS-III 的嵌入式软件开发,其中包含嵌入式系统的开发方法、嵌入式系统的外设模块、嵌入式操作系统的原理及其在 ARM 平台上的移植应用。通过课程理论教学及配套相关实验的学习,使学生掌握嵌入式系统软硬件设计方法,熟悉嵌入式软件开发的流程,建立嵌入式程序设计的思想。

学生通过学习该课程,了解实时操作系统的相关概念,如任务管理、多任务调度、进程上下文切换、任务间的同步和通信等,掌握将实时操作系统 UCOS-III 移植到 ARM 平台的方法,熟悉 UCOS-III 操作系统的部分实现及其应用程序开发,为学习后续课程和从事实际工作打下坚实的理论和实践基础。

三、选课建议

本课程是适用于计算机类专业的专业限选课,本课程的基础是 C 语言程序设计、嵌入式硬件设计等课程,要求具有一定的嵌入式基础知识和 C 程序设计的能力。

四、课程与专业毕业要求的关联性

专业毕业要求	关联
LO1: 工程知识: 能够将数学、自然科学、工程基础和专业知识用于解决复杂工程问	
题	
LO2: 问题分析: 能够应用数学、自然科学和工程科学的基本原理,识别、表达、并	
通过文献研究分析复杂工程问题,以获得有效结论	
LO3:设计/开发解决方案:能够设计针对复杂工程问题的解决方案,设计满足特定	
需求的系统、单元(部件)或工艺流程,并能够在设计环节中体现创新意识	•

LO4: 研究: 能够基于科学原理并采用科学方法对复杂工程问题进行研究,包括设计	
实验、分析与解释数据、并通过信息综合得到合理有效的结论	
LO5: 使用现代工具: 能够针对复杂工程问题, 开发、选择与使用恰当的技术、资源、	
现代工程工具和信息技术工具,包括对复杂工程问题的预测与模拟,并能够理解其局	•
限性	
LO6: 工程与社会: 能够基于工程相关背景知识进行合理分析,评价专业工程实践和	
复杂工程问题解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的	
责任	
LO7:环境和可持续发展:能够理解和评价针对复杂工程问题的专业工程实践对环境、	
社会可持续发展的影响	
LO8: 职业规范: 具有人文社会科学素养、社会责任感,能够在工程实践中理解并遵	
守工程职业道德和规范,履行责任	
LO9: 个人和团队: 能够在多学科背景下的团队中承担个体、团队成员以及负责人的	
角色	
LO10: 沟通: 能够就复杂工程问题与业界同行及社会公众进行有效沟通和交流,包	
括撰写报告和设计文稿、陈述发言、清晰表达或回应指令。并具备一定的国际视野,	
能够在跨文化背景下进行沟通和交流	
LO11: 项目管理: 理解并掌握工程管理原理与经济决策方法,并能在多学科环境中	
应用	
LO12: 终身学习: 具有自主学习和终身学习的意识,有不断学习和适应发展的能力	

五、课程目标/课程预期学习成果

序	课程预期	课程目标	教与学方式	评价方式
号	学习成果	(细化的预期学习成果)	教习子刀丸	开刊万 五
1	LO211 具备对系	1. 了解嵌入式操作系统	讲课	作业
	统设计、软件开	UCOS-III 源码的结构		
	发等涉及到的复			
	杂工程问题进行			
	识别与判断,并	2. 掌握 UCOS-III 中任务的创	讲课、实验	作业、小测验、
	结合专业知识进	建过程与任务的启动实现		实验报告
	行有效分解的能			
	力			
2	LO311 对嵌入	1. 熟悉嵌入式系统硬件设计	讲课	作业
	式系统设计遇	的流程		
	到的问题能进			
	行调研并明确	0 常担出)子系统特件始加	讲课、实验	作业、小测验、
	相关约束条件,	2. 掌握嵌入式系统软件的架	开 体、关型	实验报告
	针对系统设计	构设计		<u> </u>
	完成需求分析			
3	LO511 能熟练	此朝佑是用处图工目画出入于	讲课	作业、小测验
	运用绘图工具,	能熟练运用绘图工具画嵌入式		
	表达和解决计	系统硬件结构图		

	算机系统工程 的设计问题			
4	LO512 能根据 具体项目的特 点和需求,选择 合适的技术工 具进行设计开 发	能熟练运用 KEIL 软件对嵌入式 系统进行软件开发	讲课、实验	作业、小测验、 实验报告
5	LO812 具备责任心和社会责任感,懂法守法;注重职业道德修养	遵守嵌入式操作系统移植的 规范	讲课、实验	作业、小测验、 实验报告

六、课程内容

第1讲 实时操作系统概述

教学要求:

了解:实时操作系统的相关概念,如 UCOS 的任务管理、多任务调度、进程上下文切换、任务间的同步和通信、以及嵌入式系统设计方法等;

熟悉: 实时操作系统的基本架构;

教学要点:

- (1) 嵌入式操作系统架构;
- (2) 嵌入式操作系统设计方法;
- (3) 实时操作系统特点;
- (4) 存储器消耗需求分析;
- (5) Unix 和 Linux 操作系统;

理论课时数 2,实践课时数 0。

第2讲UCOS操作系统概述

教学要求:

了解: UCOS 操作系统的历史;

掌握: UCOS 操作系统的移植和体系结构;

教学要点:

- (1) UCOS 操作系统的历史;
- (2) UCOS 操作系统的移植要点;
- (3) UCOS-II 和 UCOS-III 的体系结构;

理论课时数 2,实践课时数 0。

第3讲 任务管理

教学要求:

了解: 操作系统的任务概念;

掌握: 操作系统的任务调度和同步;

教学要点:

- (1) 任务的概念(进程和线程区别);
- (2) 可重入性概念:
- (3) 多线程安全概念;

理论课时数 2,实践课时数 0。

第4讲 新建工程与调试技术

教学要求:

了解:基于 Keil-uVison5 创建 UCOS 工程;

掌握:在Keil中建立UCOS工程模板的方法;

教学要点:

- (1) 创建 UCOS 操作系统的目录结构
- (2) 创建 Keil-uVison5 工程;
- (3) 在 Keil 工程中添加分组;
- (4) 在 Keil 工程中添加文件;
- (5) 调试和包含路径相关配置;

理论课时数 2, 实践课时数 2。

第5讲 任务定义与任务切换的实现

教学要求:

了解: UCOS 操作系统的任务概念;

掌握: UCOS 操作系统的任务定义与任务切换;

应用:基于 STM32F4xx 芯片实现 UCOS 的任务管理;

教学要点:

- (1) STM32F4xx 中 Cortex-M4 内核的基础知识点:
- (2) 创建任务(任务栈、任务函数、任务控制块 TCB);
- (3) 操作系统系统初始化代码实现;
- (4) 操作系统启动代码;
- (5) 任务切换的实现;

理论课时数6,实践课时数2。

第6讲 任务时间片运行

教学要求:

了解:操作系统时钟节拍的概念;

掌握: UCOS 操作系统时钟节拍的实现;

应用:基于 STM32F4xx 芯片实现 UCOS 的系统时钟;

教学要点:

- (1) STM32F4xx 中 Cortex-M4 内核中的 SysTick 外设;
- (2) 初始化 SysTick;
- (3) 编写 SysTick 中断服务程序;
- (4) 主函数 main 的实现;
- (5) 观察实验现象;

理论课时数 2,实践课时数 0。

第7讲 阻塞延时与空闲任务

教学要求:

了解:操作系统阻塞延时和空闲任务的概念;

掌握: UCOS 操作系统空闲任务和阻塞延时的实现;

应用:基于 STM32F4xx 芯片实现空闲任务和阻塞延时; 教学要点:

- (1) 空闲任务的原理和实现;
- (2) 阻塞延时的原理和实现;
- (3) 任务阻塞和任务调度;
- (4) 主函数 main 的实现;
- (5) 观察实验现象;

理论课时数 2, 实践课时数 2。

第8讲 时间戳

教学要求:

了解:操作系统中时间戳的概念;

掌握: UCOS 操作系统中时间戳的实现;

应用:基于 STM32F4xx 芯片实现时间戳;

教学要点:

- (1) STM32F4xx 芯片中的 DWT 外设;
- (2) 时间戳的概念;
- (3) 时间戳的实现;

理论课时数 2,实践课时数 0。

第9讲 临界段

教学要求:

了解:操作系统临界段的概念;

掌握: UCOS 操作系统中临界段的实现;

应用:基于 STM32F4xx 芯片实现临界段;

教学要点:

- (1) 临界段的概念;
- (2) Cortex-M 内核快速关中断指令;
- (3) 开关中断指令;
- (4) 临界段代码的应用;
- (5) 测量临界段的时间;

理论课时数 2, 实践课时数 2。

第10讲 就绪列表

教学要求:

了解:操作系统就绪任务列表的概念;

掌握: UCOS 操作系统就绪任务列表的实现;

应用:基于 STM32F4xx 芯片实现就绪任务列表;

教学要点:

(1) 优先级表的概念;

- (2) 就绪列表的概念;
- (3) 优先级操作函数的实现;
- (4) 就绪列表操作函数的实现;

理论课时数4,实践课时数0。

第11讲 支持多优先级

教学要求:

了解:操作系统优先级的支持;

掌握: UCOS 操作系统中优先级的实现;

应用:基于 STM32F4xx 芯片实现任务优先级;

教学要点:

- (1) 多优先级的概念;
- (2) 操作系统初始化函数 OSInit;
- (3) 操作系统启动函数 OSStart;
- (4) 任务创建函数 OSTaskCreate;
- (5) 系统时钟处理函数 OSTimeTick;

理论课时数 2, 实践课时数 2。

第12讲 实现时基列表

教学要求:

了解:操作系统时基列表的概念;

掌握: UCOS 操作系统中时基列表的实现;

应用:基于 STM32F4xx 芯片实现时基列表;

教学要点:

- (1) 时基列表的概念;
- (2) 时基列表的实现;
- (3) 延时函数 OSTimeDly;
- (4) 系统时钟处理函数 OSTimeTick;

理论课时数 2, 实践课时数 2。

第13讲 实现时间片

教学要求:

了解:操作系统时间片的概念;

掌握: UCOS 操作系统中时间片的实现;

应用:基于 STM32F4xx 芯片实现时间片;

教学要点:

- (1) 时间片的概念;
- (2) 系统时钟处理函数 OSTimeTick;
- (3) 任务创建函数 OSTaskCreate;
- (4) 主函数 main 的实现;

理论课时数 2, 实践课时数 2。

第14讲 任务的挂起和恢复

教学要求:

了解:操作系统中任务挂起和恢复的概念;

掌握: UCOS 操作系统中任务挂起和恢复的实现;

应用:基于 STM32F4xx 芯片实现任务的挂起和恢复;

教学要点:

- (1) 任务挂起和恢复的概念;
- (2) 实现任务的挂起和恢复;
- (3) 主函数 main 的实现;
- (4) 观察实验现象;

理论课时数 2, 实践课时数 2。

第15讲 任务的删除

教学要求:

了解:操作系统中任务删除的概念;

掌握: UCOS 操作系统中任务删除的实现;

应用:基于 STM32F4xx 芯片实现任务的删除;

教学要点:

- (1) 实现任务删除;
- (2) 就绪列表、时基列表、等待列表的概念;
- (3) 任务处于删除态的理解;

理论课时数 2,实践课时数 0。

七、课内实验名称及基本要求

实验 序号	实验名称	主要内容	实验 时数	实验类 型	备注
1	UCOS 编译环境 的建立和移植	(1) Keil 的安装和建立开发模板; (2) 建立无 UCOS-II 的 STM32 的工程模板; (3) 建立带有 UCOS-II 的工程模板;	4	验证型	
2	UCOS 任务定义 与切换的实现	(1) 掌握 UCOS 任务定义的实现; (2) 在 UCOSII 里面创建 3 个任务测试。	4	设计型	
3	UCOS 阻塞(睡眠)延时的实现	(1) 掌握 UCOS 阻塞延时的实现; (2) 编写 main 函数测试阻塞延时。	4	设计型	
4	UCOS 任务优先 级和时间片的 实现	(1) 掌握 UCOS 任务多优先级的实现; (2) 掌握 UCOS 任务时间片的实现; (3) 编写 main 函数测试。	4	设计型	

八、评价方式与成绩

总评构成(1+X)	评价方式	占比
1	课堂测验	40%
X1	实验报告	20%
X2	平时作业	20%
Х3	上机测试	20%

撰写人: 程涛

系主任审核签名:

审核时间: